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The action of the group
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Abstract. Someaspectsof the geometryof gauge theoriesare sketchedin this
review. Wedealessentiallywith Yang-Mills theory, discussingthe structureof the
spaceof gaugeorbits and thegeometricalinterpretation of ghostsandanomalies.
Occasionallywe dealalso with classicalegaugetheories,ofgravitationandin parti-
cular westudytheaction of the group of diffeomorphismson the spaceof linear
connections.Finally wecommenton themathematicalinterpretationof anomalies
in field theories.

INTRODUCTION

From the mathematicalpoint of view the most natural set up for a classical

theoryof gaugefieldsrequiresthe following data:

1. A geometric environment, that is a principal fibre bundle P—~-*M,with

structure group G, on a differentiable manifold M, and somevector bundlesE.

associatedto P. Usually somefurther geometricalstructureson P, E, or M have
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to be assignedto constructthe theory(e.g. a fixed Riemannianstructureon M,

or a fibre metric on E, etc.).

2. A spaceof fields, that is the space(j of connectionson P (gaugefields)andthe

spacesF1 of sectionsof E1 (Riggs fields). Thesespaceswill be given later the

structureof Hilbert manifolds.

3. A differentiable function S : x EI1~ F7 -+ IR playing the role of the action of

the theory.
Given thesedata, the invariancegroup of the theory is the subgroupof the

group of the automorphismsof the geometric structurewhich, acting on the

spaceof fields, preservestheaction functionalS.

The main purposeof these lecturesis to study the action of the invariance

group on the spaceof fields. To be definite, we shall be concernedwith pure

gaugetheories, i.e. we shall limit ourselvesto study the actionof the invariance

groupon thespaceof connections~.

We will also occasionallyconsiderclassicalgaugetheoriesof gravitation,where

we still havea suitable principal bundle P and a spaceof connections~. The

action functional for these theories involves, in general, other fields, as a

<<vierbein>> or a (<metric>>, and we have to study the action of the appropriate

invariancegroup on the product of the spaceof connectionswith the spaceof

theothergeometricalfields which arepresentin the theory.

Some partsof the papercontainbasic definitions of differential geometryand

gaugetheories.Wehopethat,in this way, thepaperwill bemorereadableto both

mathematiciansandphysicists.

1. GEOMETRIC SETUP FORGAUGE THEORIES

1.1. InvarianceGroupsin GaugeTheories

The invariancegroupof a gaugetheoryis a subgroupof the groupof automor-

phisms of the principal fibre bundleP —~-~Mon which the theory is based.The
automorphismsgroup is, by definition, the subgroupof the groupDiff (P) of
diffeomorphismsof P, which preservethefibration,i.e.

Aut(P)=:{flfeDiff(P)s.t.VaEG,uEP then f(u-a)=f(u)-a}

where(u,a) i—+ u a denotesthe right actionof G on P.
For any fE Aut (F), there exists a unique diffeomorphism(if) of M which

makesthe diagram

P

7T~ 7r

M
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commute; i.e. (jf)(iru)=irf(u). The map j:Aut(P)-*Diff(M) given by
f ~—‘-÷ jf is easily seento be a grouphomomorphism(1). Its kernel is a subgroup

of Aut (F), which is denotedby the symbol Aut~(P)and is called the groupof
verticalautomorphismsofP. That is, we set:

Autv(P) = : {fIfE Aut (F) s.t.if = identity EDiff(M)}.

From the definitions above, it is clear that we havean exactsequenceof groups,
which,restrictedto theidentity connectedcomponents,reads

1 ~

For moredetailson thesegroupsseee.g. Trautman[1].

As we mentionedbefore, in order to constructthe theory, i.e. to define an
action functional S on the spaceof gaugefields, oneusuallyneedsfurthergeome-
tric structureson the principal fiber bundle.The restrictedautomorphismgroup
Aut (F) of P (with the additional structures)is the subgroupof Aut P which

preserves(thosestructuresarid hence)the action.
We considernow the group Aut P in two examples:Yang-Mills theoriesand

gravitationaltheories.

Example1.1.1

In Yang-Mills theory over the Minkowski space-timeM, the Minkowski metric
,~on M has to be preserved.ThisreducesDiff (M) to the Poincarégroup in the
sequenceabove,yielding

I _~~÷Autv(P)__~÷Aut(P)_~_*ISO(l,3)__+l.

So Aut (F) is an extensionof ISO (1,3) by Aut~(P).If onestudiesthe euclidean
version of Yang-Mills theory, ISO (I ,3) in the sequenceabove,hasto be replaced

by ISO (4).
More generallyoneknows that only a conformalclassof metrichasto begiven

on a four-dimensionalmanifold in order define the action functional for pure
Yang-Mills theones.Soonecanstudythetheoryon theconformallycompactified

Minkowsky spaceor on ~4 in theeuclideancase.Accordingly the invariancegroup
is an extension of the appropriate conformal group (i.e. SO(2,4)/Z2 or

50(1,5)/Z2) by the groupAut~(P).

Example1.1.2

One of the mostnaturalconsequencesof the equivalenceprinciple is that the

(I) For themomentwegive all thegroupstheC~topology,andrestrictour attentionto the
componentsconnectedwith the identity.
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gravitational forceshave to be consideredas a connectionon the space-time.In
our picture, this requiresthat the principal fibre bundle of gravitational theories

has to be the linear frame bundle L(M) of M. We stress that L(M) has to be
consideredas a frame bundle and not merely as a principal fibre bundle, that
is the solderingform t~ of L(M) is an <<absoluteelement>>of the theory and has

to be preserved(for more details see Trautman [1]). Notice that this is true

independentlyof the action which is assumedin the theory. A diffeomorphism
~ii of M naturally induces an automorphismof L (M) via its tangent map

T~M-+ T~(X)M.Any u E L(M) is a frame in 7I~(U)M,i.e. it is a linear isomor-
phism u : IR’1 -÷ 7(U)M, where ir : L(M) -÷Mis the canonicalprojection.Accord-
ingly, thecomposition

hI’*I,r(u)OU :Il~—-T~(,,~U))M

is a new frameu’ at i~(ir(u)).We call then the naturallift ~(~1i)of a diffeomor-
phism 1,1’, the automorphismof LM given by: £(i~) =:I,II~Ifl(U)ou.We know from
Kobayashiand Nomizu ([21, vol. 1, pag. 229) that for any automorphismf of

L (M) thefollowing conditionsare equivalent:
i) f is the naturallift of adiffeomorphism t,li of M, i.e.f =

ii) f leavesthesolderingform invariant, i.e.f*i~=

Since the lifting map Q : Diff (M) -÷ Aut (L(M)) splits the exact sequenceof
automorphismgroupsof L(M), wehave:

1 ~ I

and / o Q = identity. Accordingly appropriatesequencefor theorieson soldered

bundlesbecomes

1 —*1 -.--+Q(Diff(M))—---÷Diff(M)—-—*1

becausevertical automorphismotherthan theidentity do notpreservethe solder-
ing form. Incidentallynotice that Q(Diff (M)) andDiff (M) are isomorphic.

Obviously any actionfunctional for a theory of gravitationhasto be invariant
underdiffeomorphisms.

By comparingtheseexamples,oneseesthat thereexistsa remarkabledifferen-
ce betweentheorieson solderedprincipal fibre bundlesandtheorieson generic

principal fibre bundles,as no vertical automorphismof the bundle belongsto
the invariancegroupin the first case.
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1.2. Thegaugegroup

In Yang-Mills gauge theories, the gaugegroup is by definition the group
Aut~(P)and this is the group we want to study in detail. The gaugegroup is
a subgroupof the invariancegroup for Yang-Mills theories.First of all we will

show that Aut~(P)is isomorphic to a group ~ of sectionsof a bundle over

M, in this way the elementsof the gaugegroup will look more <<similar>> to the
gaugetransformationsconsideredby physicists and it will be easier for us to

constructa Hilbert-Lie structureon ~ lateron in this section.
Considerthe bundle AIP = :FxAdG, associatedtoP via the adjoint actionof

G on itself (2). This is a bundleof groups,but it is not a principal fibre bundle,
so it can haveplenty of sectionsevenwhenP is not trivial. The set F(AdF) of
smoothsectionsof AdF is clearly a groupunderpointwisemultiplication,which
will bedenotedby ~. Wehavenow the following

ThEOREM 1.2.1. The Group ‘~ is isomorphicto Aut~(P).

Proof 1ff E Autv (P), thenu andf(u) belongto the samefibre of F. Hencethere
exists a map ~ :F-* G such that f(u) = u -g~(u).The equivarianceof f, i.e. the
fact that f(u - a) = f(u)a, implies that (u - a) . g~(u- a) = u - (g~(u)a).Accordingly

one must have ~(ua) = a
1g’(u)a. Obviously the set G of such maps~ :F -+ G

is a groupunderpointwisemultiplication.Notice also that,since

f
2(f1(u))=f2(u -j1(u))=f2(u) .g~1(u)rru. (g~2(u)g~1(u))

the con~espondencef ~ ~ is a groupisomorphism.
Next, to any~ we associatea sectiong of AdF by simply taking the quo-

tient of the graph(u, g(u)) C P x G of g with respectto the adjointactionof G.

Conversely, to any g E ~, we associate~ E ~ by g~(u)= : u~[g(x(u)] where

U EP is consideredas a map u [ 1: G -+ AdP ~(u)’ (see [21,proposition5.4, vol.
1, pag. 55). Obviously enough u L ] is a group isomorphism,so ~ and G are

ismorphic.

From now on we will refer to ~ as the gaugegroup itself. Note that, for the

time being,~ is an abstractgroup, so strictly speaking,it doesnot makeany
senseto speakabout its Lie algebra.It is howeverconvenientto introducea Lie
algebraof smoothsectionsof a suitablebundlewhich,at it will beexplainedlater,

(2) I.e. we considerthe quotient of P x G underthe action of G given by ((u,a),b) ~—~---~

I-~.----*(u-b,b~ab),whereuEPanda,bEG.
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playsthe roleof the Lie algebraof ~.

Considerthe space f2 *(M, adP) of smoothsectionof the bundleA*M ® adP.

Here adP=PxadG’,whereG’ is the Lie algebraof G and the actionof G on its

Lie algebra is the adjoint action (3). Elementsof f~*(M,adP) are forms on M

whosevaluesat x EM belongto the fibre of adP at x, i.e. their local expressions

are G ‘-valued forms.Considernowelementsw~,w2 E f~*(M,adP)s.t. = ®

= a2® r2. Again any elementu EP can be seenas a map u : G~-÷adPlfl(U)
([2} proposition5.4,vol. I, p. 55). Thenwe candefine

(1.2.2) [w1, w2] (x) = : a1Aa2® (u [u
1r

1, u~r2]G.)

wherex= ~u) and the bracketin the r.h.s.is the bracketof G’.
The bracket (1.2.2) gives &~Z*(M,adF)the structureof a gradedLie Algebra.

For, if wP, ~ are respectivelyp- and q-forms in fl*(M, adP),then we have:

~ l)P~+l[w~,wP]

and thegradedJacobiidentity

[wP, [w”, wi]] = [wP, ~qj ~r] + (— 1)~”~[w”,[we, ~r]I

holds.
In particular~Z°(M,adF) = F(adF) hasa naturalstructureof a Lie algebraand

it is intuitively clear that it shouldbe somethinglike the <<Lie algebra>>of the

gaugegroup ~. In order to makethisstatementmathematicallyprecise,we need
to give a Lie structureto the group~. Considernow any vectorbundleF over

M. For any positive integer k we can introduce the k-Sobolevnorm on the
vector-spaceof C~-sectionsof F andconsiderits completionHtc(F) which is an

Hilbert space (see [3], [4], [5]). We always assumek >dimM/2 in order to
guaranteethevalidity of the Sobolevembeddingtheorem.

Accordingly we denote by ~ adP) the k-Sobolev completion of
&?.“(M, adF) for any p.

The gaugegroup itself¶~canbe consideredas a subsetof thespaceof sections
of a vector bundle which has a suitable spaceof complexmatricesas standard

fiber; so it canbe shown that ~ itself canbe <<enlarged>>to an Hilbert Lie group

~k(see [3]).

Wehavenow the following:

PROPOSITION(1.2.3). The spaceczk°(M,adP)is the Lie algebra~of theHubert

(3) The elementsof S2P(M,adP) canbe consideredastensorialforms on P of type ad ([2]
Esample5.2 vol. I, p.76).
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Lie group ~k

Proof Forthe proofseeMitter andViallet [3].

We will be also interestedin the following two subgroupsof Thefirst one
is thegroup

=

whereZ is the centreof ~k’ which is nothingelse than the groupof sectionsof

AcIP having values in the centre of G. If G has discretecentre,as we always

assumein physical applications,~k is a coveringof ~. So their Lie algebras
are isomorphic.

The secondsubgroupof we are interestedin is theso calledpointedgauge
group ~. Thisis definedasfollows

E ~~~g(xQ)= e E G},

where x0 is a fixed point of M (i.e. the point <<at infinity>>). The Lie algebraof
~is givenby

~‘= {~E f�~°(M,adF)I ~(X~~) = 0).

1.3. Thegroupof diffeomorphisms

As we haveseenin section 1.1, the invariancegroupwhich is appropriatefor
gravitationaltheoriesis the group Diff (M). This canbe convenientlydescribed

asfollows.
Let F = M xM be the trivial fiber bundle on M, havingM as standardfibre.

Sectionsof F are mapsf :M —+M. We restrict our attention to the set C’(F)

of sectionsof classC’, the topology of C’(fl will be the topologyof <<uniform
convergence>>up to the first derivative.Thegroupof diffeomorphisms(of class

C’) is then

C’~= {fEC’(flI3f~and f~EC’(fl}.

It is easyto showthat C~is openin C’(F).

Next we want to give a Hilbert manifold structureto this group.This can be

done again by resortingto Sobolevspacesof maps. Let H”(F) be the Hilbert
manifold of sectionsof F in Sobolevclass k. Then for k> I + dimM/2, let

= H”(F) n C’~.

Due to the Sobolev embeddingtheorem,the inclusion H”(F) c C’~ is conti-

nuousandhence�~~‘is openin H”(F). Accordingly ~7k itself is aHilbertmanifold.
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Collectingtheresultsof Ebin,we havethe following

PROPOSITION1.3.1. Fork> 1 + dim M/2 wehave:

i) ~ is a group undercompositionof maps

ii) For any ~ E~
1’, the right action R<, :~1’-~t1’given by R,~,4= Øo t,li is

smooth.

iii) For any 0 Es” the left action L~: f~”
4~~kgivenby L~~,Li= o if.’ is conti-

nuous,but not differentiable.

iv) ~)~‘ is a topologicalgroup.

Proof SeeEbin [4].

The lack of differentiability of the left actionof ~ on itself meansthat ~

is not a Lie group. Noverthelessit is a Hilbert manifold,andonecanconsiderthe

tangentspaceTe~”at the identity e E~
1’.In orderto haveabetterunderstanding

aboutthe structureof the space~ let us considertheoneparameterfamilies
of diffeomorphisms ifi~E~ such that = e. Germsof i/1~ at t = 0 can be

identified with vector fields on M of Sobolevclass k, that is we have ~
3k =

= Hk(TM). Since in our hypothesesk> 1 + dim M/2, elementsof H”(TM)

are at least C
1 vector fields on M. Naturally onewould like to defmethebracket

for two elementsin T~~“ as the bracket for the correspondingvectorfields in
H”(TM). Unfortunately if X, YEH”(TM) then [X, Y] EH”_t(TM), so for any
k, Te~it~’~is not closed under the bracketinducedby H~’(TM)andso it is not a

Lie Algebra.

To get a Lie algebraonehasto takethe limit for k -+ 00, i.e. onehasto consider
smoothvectorfields on M. The correspondinggroupof smoothdiffeomorphisms

howeverwill not be a Hilbert manifold any more,sincethe modelspacewill be a
Frechetspace;actually, Diff (M) = ~ is a projectivelimit of Hilbert spacesin

thesenseof Omori [6] (4).

In the following we shall work with a subgroupof ~ We say that a diffeomor-

(4) Recall the following definition: A topologicalspaceV is astronginverselimit of Hilbert
manifolds(i.e. a strongILH - manifold)modelledovertheFrechetspace,~ if

i) V is the projectivelimit of smoothHilbertmanifolds V~(i E ~ ~)modelledoverasequence
of Hilbert spacesE

7 with projectivelimit ~, and1’~~ for/ ~‘ t

ii) For any x E V thereexistsa coordinateneighborhood®.(x) in J’~.andhomomorphisms

~/i.(x)-~.d,,, where is an open subsetof E1, such that Q/~(x)D®,(x) for j~>i,and

iii) Theprojectivelimit urn ‘?i,(x) is anopenneighborhoodofx in V.
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phism if’ E C1~strongly fixes a point x
0 EM if ifi(x0) = x0 and if’,[~ = identity

on 7M. Fork> 1 + dim M/2 we define thegroupsof diffeomorphismsstrongly

fixing apoint x0 of Sobolevclassk as:

~IifE~,if1(xo)”xo and if’l =id onlM}.

As for ~ one can show that is a topologicalgroup,andalso a Hilbert manifold,
but thesetwo structuresdo not <<fit>> togetherto yield a Lie group structureon

for any k. The tangentspace1 at theidentity eE is easilydescribed

in termsof vectorfieldson M. We haveT = H~(TM)where:

H0k(TM) ={XIXEHk(TM),X(xo) = 0, 1X = 0),

whereTX is the tangentmap to X.
We now lift the action of thesegroups to let them act on the linear frame

bundlevia the naturallift ~ of section 1.2. We havethefollowing

PROPOSITITION(l.3.2).Letk> 1 + dimM/2, then

i) ~ thenatural liftQ(if.’):L(M)—~-L(M)issuchthat

for any u Err~(x0)
ii) VX E ~ thenatural lift Q~Xis suchthat

0

for anyu E7r
1(x

0).

Proof Let ~ be a 1-parametersubgroupof ~, with if.’0 = e. Then

Q(ifi~)(u)= iflt*I()0u Err
1(ifi(ir(u)));

now if u E 7r ‘(x
0), we have if.’(ir(u)) = ir(u) and if’s I~(u)= id, from which (i)

follows. Next,by taking the germof ~ at u E ~~t~x0), it is easyto showthat

(ii) holds. Note that the proof requiresthat if.’ is at least of classC’, which is
guaranteedas far ask> 1 + dim M/2.

1.4. The actionof theinvariancegroupson connections

Let ~ be the spaceof smooth connectionson P. EachelementA E c~can be
representedas a pseudotensorialone-from of type ad on P ([2], vol. 1, pag.77).

Accordingly the differenceA’ — A of two connectionsis atensorialoneform of

type ad. It is well known (see [2], vol. 1, Example5.2) that the spaceof such

tensorial form is isomorphicto thespace&~‘(M, adP),andwe shall not distinguish

betweenthesetwo spaces.
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So ç~j’ is an affine space modelled over f~‘(M, adF). Any automorphism

f :F-+F inducesa transformationon ~ which is simply given by the pull-back
of connectionforms(see [2], vol. I, pag.81). Thenwe haveanaction:

(1.4.1) Aut(P)xcf’—÷~

(f,A) ~+f*A

Let now f1 be a differentiable one parameterfamily of automorphismsof P,

and let Z be the vectorfield on F generatingf1. For any A E ‘6, we havea curve
A1=f~’Aand a correspondingcurve r~=A1 —A in f~

1(M,adF).Thenwe com-

pute

dr

~ =~A
dt 0

where 1zf~denotesthe Lie derivativealong Z. Accordinglywe havea linear map

a : aut (F) ~ F(T’6)

given by a(Z) = A where autF the subalgebraof vector fields on P which

generateflows of automorphismsofF.
Next we need an explicit representationfor the linear map ct We have the

following:

PROPOSITION(1.4.2). LetZ E aut (F), A E ‘6; then

~t°~A=dA(Y)+h(Z)IF

where Y= :A(Z) EfZ0(M,adF) is related to the vertical componentofZ, h(Z)

is theA-horizontal componentof Z, F is the curvatureof A and dA is thecova-

riant derivative, which is a linear first order operator from fZ°(M,adF) to

f2 ‘EM, adF).

Proof Seee.g. Trautman[7].

Notice that Z E autF implies thatA (Z) E 17°(M,adF).
Wenow considertwo particularly interestingcases:

i) Vertical automorphisms.

Let f~be a oneparameterfamily of verticalautomorphismsofF. As we already
know the vectorfield Z generatingf

1 is a sectionof the vertical tangentbundle
to F. Henceh (Z) = 0, andwe have

(1.4.3) .5fZA =dAA(Z).
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ii) Lift of diffeomorphismsfor frame bundles.
WhenF = L(M) we can considerlift of diffeomorphisms.For any vectorfield

X on M, let Z = ~X be its lift to L(M). Now the vertical and horizontalparts
of Z definedwith respectto a connectionA entirely dependon X. In particular
thecorrespondence

X ~—~A(Z)

is a first orderdifferential operator(seeTrautman[5]) so that the map

(1.4.4) X h-~--~

is a secondorderlineardifferentialoperator.

One can show by direct computationthat both theoperatorsdA and .2~, have
injective symbols.

In the following we would like to give a Hilbert manifold structurealso to
the spaces of connections.This is done by consideringthe k-Sobolevnorm

(k > dim M/2) for the space12 1(M, adP).By completion onegets Hilbert spaces

17k’(M, adP) and the space ‘6k of k-Sobolevconnections,will be definedas an

affine spacemodelledon 12~(M,adP).

2. GAUGEORBIT SPACES

2.1. Somephysicalmotivations

At this point it is useful to interruptbriefly our mathematicaldescriptionto

sketchsomeof the featuresof gaugetheoriesthatmotivateour study.
In the Feynmanapproachto (euclidean)quantumphysicsoneshouldconsider

expressionslike:

f e~

(2.1.1)

I
where the Feynmanintegralsarecomputedoverthe space‘6of connectionswith
measureDA. Here .~ is a gaugeinvariant functionalover’6 andS is, asusual,the
euclideanaction. So the integrandsin (2.1.1) are actuallydefinedin the spaceof
gaugeorbits, i.e. in the quotientspace‘6/~.

Since the orbits in ‘6 are expectedto have infinite measureone shouldreally
integratethe integrandsin (2.1.1) over ‘6/~’ insteadof’6, but this is difficult.
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What one usually does is to choosea section,i.e. a map a : ‘6/~’-+‘6. This

<<change of variables>> gives a <<Jacobiandeterminant>>(the so called Faddeev-
-Popov determinant)that will be denotedby <<detMx’. As we will seelater in

more details,M is an operatorwhich maps the (infinite dimensional)Lie algebra
of ~ into itself. So <<det M>> is ill definedunlesswe perform somekind of regula-
rization. Nevertheless,for the time being, we forget about this problem and

operateonly at a <<formal>> level. For reasonwhich haveto do with the Feynman
integration,wewant to write:

(2.1.2) detM= DcDc_e_
1’M(’

wherec and ~ are anticommuting scalar fields calledghostand antighostrespecti-

vely.
In orderto understandthis formula, let us considerthe equation

(detAY’= dzdz*e_Z*.4Z

(z E C”, A is a complex n xn matrix) and <<extend>>its validity first to fields and

then to anticommutingfields. The anticommutativily is responsiblefor the fact
that we have detM instead of (detM) in (2.1.2), accordingto the Berezin
rules for integrationover anticommutingvariables(seee.g. [8]). At thispoint the

integrand of the Feynmanintegralsof the theory can be written in the form
~ where S’(A) is called the <<effective>> lagrangian and contains S(A),

cMc andanotherterm calledgaugebreakingterm.
This effectivelagrangian,which is the relevant object for perturbativecalcula-

tions, is not any moregaugeinvariant, it is BRSinvariant, i.e. invariantundera
specialclassof transformationswhich involvesalso theghostfields.

We imagine at this point the bravemathematiciancompletelylost in themidst

of these exotic, ill defined objects. Even thoughwe cannot dig more into the
quantumphysicsof guuge theoriesand we must referto the physicsliteraturefor

a completeexplanation,we would like to answerin this the following questions:

a) is the space‘6/~of gaugeorbitsa nice mathematicalobject?
b) doesit exista sectiona : -÷ ‘6?

c) whatis themathematicalmeaningof the Faddeev-Popovdeterminant?
d) what is the mathematicalmeaningof theghostfieldsandthe BRStransforma-

tions?
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2.2. Thespaceof gaugeorbitsin Yang-Mills theories

In order to havea nice spaceof gaugeorbits we must, first of all, havea free

action.

Now the action (1 .4. 1) is generallynot free. Consider for instance a principal

G-bundle’with G = SU(N) and let A be a connection, g E~ and A - g be the

connectionobtained through the action (1.4.1). In local coordinateswe have:

(A- g)(x) =g~(x) A(x)g(x) +g’(x) dg(x)

i.e. (A~g) =A +g~’d~g.

Here A and g are written in matrix form and dA (the covariant derivative) is
locally dA = d + [A, 1.

Thenthe elementsg E ~ which leaveA fixed are the solutionsof the equation

(2.2.1) d~g=O.

We can think to eq. (2.2.1) as a <<coordinatefree>> equation,if we interpret

the elementsof ~ as sectionsof the bundle Hom (E~’,EAT) which are special
unitary at eachpoint; hereEN is theN-dimensional vector bundle associatedto

the <<identity>> representationof SU(N)on C~’(see[9]).

Now the solutionsof the equation(2.2.1) are determinedby the valueof g

at a fixed point x EM.
Infact Vy EM consider a path 2 connectingx and y and its horizontal lift

2’ at g(x) E Horn (EN,EN); the endpoint of this path gives usan elementin the
fiber of Hom (EN,EN) overy.

So we can constructa solution for the equation(2.2.1) if and only if for any
loop i&~at x the horizontal lift 2~,at g(x) gives us again g(x), i.e. providedthat

(2.2.2) g(x)—a~’g(x)a, VaEHA =holonomygroupof A.

If we want to rule out the existenceof any non trivial solution to (2.2.1), in

view of the (2.2.2)we have to consider~ insteadof ~ and we have to restrict

ourselvesto the space‘6 of irreducibleconnections,i.e. thespaceof connections
for which the only elementsof G which commute with the holonomy group

are theelementsin the centerof G. Sowecanstatethefollowing results

THEOREM 2.2.3. The action of ~on the spaceof irreducible connection‘6 is

free.

Alternatively we can considerthe actionof on ‘6and verify that thecondi-

tion d~g= 0 togetherwith the condition g(x
0) = identity for some x0 EM

impliesg(x) = identity for any x in M.



134 P.COTTA RAM USINO, C. REINA

So we have:

THEOREM 2.2.4. The action of (g~on ‘6is free.

We haveseenbefore that the spaces‘C, ~, ‘~‘0and ~ can be consideredas

Hubertmanifolds (5).

We havealso (see[9]):

THEOREM 2.2.5. Thespace‘6is openanddensein’6.

This implies that also ‘6 is a Hilbert manifold.The next step is to seewhether

the spaces‘C/~and ‘6/~10arealso smoothmanifolds.
Weknow from Bourbaki ([10]) the following:

THEOREM 2.2.6. Let G bea Lie group (or also a group manifold), N a manifold

and let (x,g) ~ g be afree actionofG on N Herex ENandg E G. Moreo-

ver let ~i :N x G -+N xN be a map defined by p(x,g) = (x - g, x). Then

N(N/G, G) is a principal fibre bundleif:

a) p is a closedmap

b) themappingg ~-.--~ x~g is an immersionat eachx EN

Using this theoremonecanprove that

6—+ ‘CM and ‘6—~‘6Kc0

are principal fibre bundles,providedthat the groupG is oneof thegroupsSU(N)

andM si oneof the manifoldsS
3,S4, T3, T4 (see [3], LI 1], [12]).

We denote by ~ the manifold ‘CM and by ~ the manifold ‘6!Ec
0. These

manifolds ~9and are alsocalled <<spacesof gaugeorbits>>.
We want now to fmd out whether the principal bundles ~(&, ~) and

‘6(&~. ) are trivial or not, that is whether there exist (global) sections

o:~—~’Canda0:(9~-+’6.
It turns out that thesebundlesare not trivial whenM is one of themanifolds

S
3, S4, T3, T4, and G is one the SU(n)s. In thesecasesthe answerto question

(b) at the end of sect. 2.1 is negativeand this fact is referredto by physicists

asthe Gribov ambiguity.

(5) In the future we will quite often omit the Sobolevindex in ordernot to have a cum-
bersomenotation.Neverthelesswe will assumethat our spacesarethe properSobolevcom-
pletionsof the consideredspacesof sections,unlessotherwisestated.
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The proof of the Gri.bov ambiguity is now sketchedfor the bundle ‘6((~,~)
whenM = ~4 (see [9]). The first step is to prove that themanifold ‘Cis acontrac-
tible spaceandwe referto Singer(theorem2 in [9]) for the proof. —

If’6 is contactibleand ‘6= d2 x ((g then0 = rr1.(’C) = ir1.((9) x ir.’.((g) andhence

= 0. So in order to prove the Gribov ambiguity it is enoughto provethat
for some/,7r1(~)’�z0.

A direct calculationshowsthat

(2.2.7) ir.(~0)= ~ 4(SU(n)) ([9], theorem 5)

and from the following two exactsequences(fibrations)

(2.2.8) 0—# ~ —*SU(n)—s.0

(2.2.9) 0 —+ 7Z~—+ —.÷ —* 0

we havetheexactsequencesof homotypygroups

(2.2.8’) . . . —srn ir,,(’(g0) —# ir.(~)—+7r1(SU(n))—~r1_1(’60)—--*.

(2.2.9’) . . . —* 7r~(~,,)—.4 7r~(’6)—+ ir1(~)—* ir1_1(Z~)—+...

From (2.2.8’) and from the fact that rr1(SU(n)) = 0 for j = 0, 1,2 we deduce

that:

~ for k=0, 1.

From (2.2.9’) it follows that thesequence

—~ 7L,, —÷ ir0(’(g) = 0

is exactand so: ir0(~)= 0 ~ ir1(~)~ 0.

Hence,ifthe groupG is SU(n),n > 2

= ir4(SU(n)) = 0 ~ ir1(~)~ 0.

ForG = SU(2)we have:

(2.2.10) 1r.(~g)=7r,(~), />1

dueto thesequence(2.2.9), and

(2.2.11) rr3(~q)—~ ir3(SU(2)) = ~(~) = ir6(SU(2)) = ~ ~

dueto the sequence(2.2.8’).

Henceif ir2(~)= 7r3V(g) = 0 then

0~Z~Z12~0 Z=Z12 whichisabsurd.

Wehavethensketchedthe proofof
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THEOREM (2.2.12). The bundle ‘C((9, ~) is not trivial when M = S4 and G =

= SU(n).

One can also prove that the samestatementis true for M = S3, T3, T4 and
G = SU(n)(see [9], [12]).

As far as the bundle‘C(&
0, ‘6~)is concernedwe have the following:

THEOREM (2.2.13). The bundle ‘6((9~,~) is not trivial whenM= S
4orM =

andG = SU(n).

Proof The space‘6 is an affine spaceso it is obviously contractible.To prove

the theoremis enoughto prove that ir
1(~(g0)~ 0 for some/. ForM = we have

= ¶1~4(5U(n))and so for n = 2 1r2(’60) is equal to ir6(SU(2)) = Z12
and for n> 2 7r1V(g0) = ir5(SU(n)) = Z. As far as the caseM = ~3 is concerned
one can prove ([9]) that 7r0(’(g0) = rr3((SU(n)) = Z.

2.3. The spaceof Diff-orbits in gaugetheoriesof gravitation

In gaugetheoriesof gravitation,one works with the linearframe bundleL (M)

on thespace-timeM, andno vertical automorphismsare allowed(seethe example
1.1.6). This implies that, unlike in Yang-Mills gauge theories,one can give a

<<dynamicalstatus>>in thetheory to a family of sectionsof L (M) a~: Q/~,—÷L (M),

locally definedon a covering{‘?I } of M. Indeed in a gaugetheoryof gravitation
one generally works with two set of fields
i) a vierbein,i.e. thepull back o,~’0 of thesolderingform 0.

ii) a connectionA on L(M), locally representedby a family I’~= o~’Aof <<vector

potentials>>onM.

Since 0 is fixed oncefor all, the dynamicsof the vierbein dependson the
sectionsa~.In most theories,these are choesento yield a reduction of L(M)

to an orthonormal frame bundle on M, i.e. they give a <<metric structure>>. In
thesecaseswe havedifferent choicesof the u0’s giving rise to the samereduction.
In physics this freedomin called the <<Lorentz invariance>> of the gravitational
field, becausetwo systemsof sectionso~and u~give rise to the samereduction

if and anly if a~,(x)= A0(x)u0(x)(x E Q/~),where A0(x) is a space-timedepen-

dent Lorentz transformation.Notice that such an invariance does not come
from anytransformationon L(M).

In the following we shall neglect such an invariance, and we will identify

all the vierbeinsgiving rise to the samemetric field. Accordingly we will study
the action of the diffeomorphism group on the spaceof metrics and on the
spaceof connections.For instance in the case of the Einstein theory, we can

limit our attention to the action of diffeomorphismsgroup on the space of
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metrics,while in the Hilbert-Palatini approach to General Relativity (see e.g.
[13]) we have to considerthe action of DiffM on the connectionsas well. On

the other side if we considerthe Eddington lagrangianwe are led to study the
actionof DiffM on the spaceof connectionsonly.

Incidentally we notice that Eddington’stheoryhasbeenprovedto be classical-
ly equivalentto GeneralRelativity,via a suitableLegendretransformation([14]).

This classicalequivalence suggestssomeinteresting considerationsat the quantum
level (see [15]).

To be definite, in the following we will restrict our attention to the <<Eucli-

dean>> version of gravity and our metricswill be properly Riemannian.To get a
proper mathematicalset up, we will further assumethat the basis manifold M

is compact,without boundary andendowedwith a fixed differentiablestructure.

In order to give a Hilbert structureto the manifoldsof fields,we proceedas

follows. We denoteby H’(7~
2))~H”(7~’) respectively the Hilbert spacesof sym-

metric tensorfields of type (0,2) and of tensor fields of type (1, 2) of Sobolev

classk, and introducethe manifolds

= I p EHk(1~2~),p is positivedefinite}

is an open cone in H”(7~2)),and thusis a Hilbert manifold (see([4])) while
‘6k is an affine manifold modelled on H”(7~). As usual we assumek> 1 +

+ dim M/2. We havenow a map

‘6k ~ 1

obtainedby associatingto every connectionits symmetrizedRicci tensor. ,9°is

actually a quasi-linearfirst order differential operator,and we learnfrom Palais
([5]) that it is a smoothmap.Since is openinH”(7~2)),thenthe set

~k+1 ={FE(Ck+lI ~9°(F)E.#fk}

is as well a Hilbert manifold,whosepoints are connectionswith invertible Ricci
tensor.

We now studythe actions

+ I ~ ~‘~k ~

+ 2 ~ ‘6k —~ ‘6k

obtainedby extending the actions of C
1 diffeomorphismson smooth metrics

and of C2-diffeomorphismson smooth connections. Both these actions are
not free; fixed points comefrom metricshavingisometriesand from connections

admittingaffine transformations.
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One way of getting free action is to restrict our attention to diffeomorphisms

which stronglyfix a pointp EM, i.e. to the group

23~=:{~1/I~E~ks.t.i,li(p)=p and

which is a closed subgroupof ~k ([16]). In [16] it is provedthat ~ 1 acts
freely on .Afk and this proof can be straightforwardly generalizedshow that
also ~ 2 actsfreely on ‘6k. Thus we getsurjectivemaps:

‘6k ‘6k!~k+2

which are continuous,provided that we give the quotient spacesthe quotient
topology. What it is not obvious is that the quotient spacescan be given the
structureof smoothHilbert manifolds,andthat the surjectivemapsabovedefine

smoothfibre bundles.

The map ~.Ilk_* ~~
1k’~k+ has been extensivelystudiedin the literature (see

e.g. Ebin ([4]), Bourguignon([161) and also Marsden([17]) for applicationsto

GeneralRelativity). Herewe provethe following

THEOREM 2.3.1. ‘6k -÷ ‘6kI~°+2 is a smoothfibre bundle.

Proof We checkthat thehypothesesof Theorem2.2.6are satisfied.
i) The actionof~k°+2 on ‘6k is free by construction.

ii) Consider the map p ~ 2 x ‘6k -~ ‘6k x (4 given by p(~4’,F) = (~1*F,F),

where ~,1,*F denotesthe imageof F underthe diffeomorphism~‘. Now p is closed
if andonly if p~is continuous.We want now to show that, given a converging
sequence(i~i’ ~, F,,) Elm p, then thesequencep 1(ip,~’[~, 1,) = (‘.,l’,,, I,) conver-
ges in ~ 2 X ~ Let (~,1i,~’F,,, F,,) ~ ~ * F, F); it is then enoughto show that

Ii,,-)- ,li on ~ 2~ Supposethe contrary is true, then the sequence,~/‘~I.’,~’[,)
will convergeto ,9~(,/i*F),because5” is continuous,but will not converge,
andthis is impossiblesince the actionof ~ on thespaceof metricsis proper

(seeEbin ([4])).
iii) Next we have to show that the map ~ ~ 2_~’6k given by v

1,(i,li) =

is an injective immersion for any F E ‘6k. Now, r’1~ is obviously injective, since

the action is free. It is also closed, becausea convergentsequenceI,1I,~’Fon an
orbit, yields a convergentsequenceiji,, on ~ 2 by the sameargumentused in
(ii). The tangent map TP~: ~ ]~‘6kis obviously injective, since it is
given by the Lie derivative Tv~(X)= ~ F, which vanishesiff X = 0. Moreover

it is a second order differential operator with injective symbol. Accordingly
Tf’~ksplits,bythe usualargumentof the Fredholmalternative.
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Remark. From the proof above, it is clear the reason why we restricted our
attention to the manifold ‘6k, instead of working on the whole ‘4. In this way

we could infact benefit from the resultsalreadyavailablefor the spaceof metrics,
thanksto the fact that ,9°( ) is continous.

As a final remark,we notice that thereexistsa map ,9”such that the diagram

‘i”

I — I
‘6 !~0 R[~0k+l k+3 k k+1

commutes.Hencethe Ricci map .~/is a smoothbundlehomomorphism.

3. A CONNECTION AND A RIEMANNIAN METRIC FOR THE SPACE OF
GAUGE ORBITS

3.1. Coordinate systemon the spaceof gaugeorbits

We want now to describemoreclosely the structureof space&.

The first step is to bedefinesomeoperationsin fl*(M,adP):

a) theHodgeduality operator:

(3.1.1) * : f2”(M,adF) —4 17dimM_p(M,adJ~)

which is the obvious extensionof the Hodgeoperatorfor ordinary forms on M.

b) the cupoperator

(3.1.2) A :17”(M,adP)x ~

which combinesthe exterior productfor ordinary forms onM with the invariant

innerproducton G’ (Killing form).
c) innerproduct

(3.1.3) (I): IV’(M, adF)x 17”(M, adF) —f

(~Iw)=: ~iA~w.

Forany A E’C, let dA denote,asusual,the covariantderivative,i.e.
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dA :&7~(M,adP)—÷12~’(M,adP) (6)

The operatord~will be,by definition, theadjoint of dA with respectto the inner

product (3.1.3). Obviously

d~: 12,~’(M,adP)—~ 12’I~(M,adP)

and both dA and d~are linear operatorswhich are continuousin the Sobolev
norms.

Wehave thenthe following:

THEOREM (3.1.4). VA E ‘6k the operator d~dA : ~ + 1 ~ is a continuous

bijection.

Proof See[ll].

Wehavealso:

THEOREM (3.1.5). For any A E ‘6k, ~ + ~)and ker d~12~(M,adP) are two
closedsubspaceswhich are orthogonal w.r.t. the innerproduct (3.1.3). Wehave

also ~ adP) = d~(’(g~+ ~)~ ker d,~.

Proof Wehave

d~(fg,~~~)= ker(l —dA(d~dAY’d~)

hence both dA&~+l) and kerd~are closed since they are the kernel of closed

operatorsin a Hilbert space.MoreoverV ~‘ E ker d~,r E 12k°(M,adP) we have:

(~I dA r) = (d~~‘ r) = 0.
Finally VpE 12~(M,adP),wehave:

wherethesecondtermobviouslybelongsto kerd~.

We denotenow dA (~ + ~ by VA and kerd~by HA. We are then able to

split each tangentspaceat A E ‘6k into two supplementarysubspacesHA and

VA; V.A is, by definition, the vertical subspaceat A E (4 as it is evident from
the study of the case (i) in Sect. 1 .4, Moreoverdue to the ~ -invarianceof the

(6) In this section,for the sakeof clarity, we will resumetheSobolevindices.
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inner product (3.1.3), the spaceHA, which is the orthogonal complementof
VA, satisfiesthe condition:

hereRg denotes the right actionby g E ~. Finally sinceHA dependssmoothlyon

A, wehave

ThEOREM 3.1.6. The subspacesHA, A E (4defineaconnectionon’4((çk,~k+1~-

Considernow the following subsetsof ‘6k:

.~(A)={A’ E (41 d~(A’—A) = 0}

,9~(A)={A’E(4I IIA—A’II<~}.

Thenwe have:

ThEOREM 3.1.7.

VA E (4 3b >0 s.t. Q~(A) ~(A) fl ,9~(A)

doesnot contain two gaugeequivalentconnections.

Proof See[l8].

Let ii now denote the projection map in the bundle ‘Ck( ~k’ ~ Due to
theorem 3.1.7, it maps homeomorphically Q~(A)onto an open subset

UA ir(Q~(A))of ~ k~ If we denote by itA the projection map restrictedto
Q~(A)and by ~A the map which assign to A’ E ~~(A) the element of

~(M, adP)givenby A’ —A, thenan atlasfor d7 isgiven by

AE’4

(see[3]).

Notice that HA andHA for different A and A are isomorphicasHilbert space.
We would like now to write the expressionof the connectionform andof the

curvatureform correspondingto theconnectiongiven in theorem3.1.6.

THEOREM 3.1.8. The connectionform and the curvatureform of theconnection

givenby thesplitting TA (4 = HA 0 VAare asfollows:

a) connectionform o~

aA :TA(4—~k(M,adP)~~k
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b) curvatureform K

kA :TA’4x TA’4-~~°(M,adP)~_’6.~

Ti, T2 h-’--~-~(d~d,4) 1(b*ft(r~)— b*h(r~~))

where r,~”, i = 1, 2 is the horizontal componentof r~,b is theoperator b ~ =
T

1 Tj

= [r,~, . }andb*~istheadjointofb ~w.r.t. to the innerproduct (3.1.3).
Ti Ti

Proof (a) is obvious from the proof of theorem 3.1.5; as far as(b) is concerned

seeSinger ([9]).

As a final remark, notice that the choice of the connectionas in theorem
(3.1.6) correspondsin the physicistslanguageto the choice of the xcovanant

backgroundgauge>>.

3.2. A weak Riemannian metric on the spaceof gaugeorbits

In this section we want to constructa <<weak>> Riemannianmetrics on the

spaceof gaugeorbits. Later on we will establisha relation betweenthis metric
andthe Faddeev-Popovdeterminant.By a(weak)Riemannianmetric in aHilbert

Manifold, we meanthe assignmentin a smooth way of a non degenerateinner
productin eachtangentspaces.

A Riemannian metric is called <<strong>> if the inducedmetric in each tangent
spaceis equivalentto the oneinducedby the original inner product. We define
now VX1, X2 E 7, (9, a’ E (9:

(3.2.1) ~a~i~X2) = (X~,X~)A

where A’ Eit~(a’); ( )~.is the inner product in J~4inducedby the inner
product (3.1.3) and X,” (i = 1,2) is the horizontal lift of X1 (i = 1,2) w.r.t.

to the connectiongiven by theorem(3.1.6).
Let us now choose a E (9, A E ir~(a), a’ E it Q~(A)and A’ E Q~(A)with

ir(A’) = a’. In thelocal coordinatesgiven in sect.3.1 wehave:

(3.2.2) ~H(X1,X2) = (r1 q(A’) r2)

where E TA~(Q~(A))= H,4, q(A’) = 1 —d,4.(d,~.d,4Y
1d,~’and r~satisfies the

equationX~= q(A’) r,.

Sinceq(A’) is the projection operatorontoJ-~,it is evident that the expression

(3.2.2)coincideswith (3.2.1)for elementsa’ E (9 in the neighborhoodit Q,~(A)of

a.

The formula (3.2.2) doesnot give any more a good expression for the metric
(3.2.1) when the operatorq(A’) restrictedto H,4 is not invertible, that is when
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part of the orbit througha’ is tangent to ~k(A); i.e. whenthe <<Gribov ambigui-
ty>> appears.

The metric (3.2.1) gives a norm in eachtangentspace 7(f’9), a E (9 which is

weakerthan the Sobolevnorm,that is (3.2.1)gives a weak Riemannianstructure.

3.3. Faddeev-Popovdeterminant

Let now A be a connectionandA bc beits expressionin local coordinates.The
<<vector potential>>A bc is thena G’-valued 1-form onM.

According to the physical literature a gaugecondition is a condition of the
form

(3.3.1) f(A’°’)=O

where f maps(locally defined)G ‘-valued 1 -forms on M into G’-valued0-forms

on M. Let gboc be the local expressionof thegaugetransformationg andconsider
the mapping:

(3.3.2) gl0C ~.~_~.f[(gIOC)_bAIOCgIOC+ (gl~cyldgb0c].

The Faddeev-PopovoperatorMf(A 10C) is definedas the functionalderivative of

the mapping(3.3.2)atgboc= identity.
Mf(A be) is an operator which maps the spaceof G’-valued 0-forms on M

into itself. So, in a very much <<heuristic>> sense,M
1(A toe) is a squarematrix and

one can consider its determinant, which is, by definition the Faddeev-Popov

determinant~F.P.
The so called <<backgroundgaugecondition>> is particularly simpleand,among

other things,has the advantagethat it canbe written down,without resortingto
the local expressionof the connection.The backgroundgaugeconditionreads:

(8.3.3) d~(A—A0) = 0

whereA0 is a fixed connection.In this casethe oPeratorMf (A) =MA(A) is the
operatord~0dA.

BabelonandViallet ([19]) showedthat for the backgorundgauge,the Faddeev-
-Popov determinant is related in a formal sense to the metric (3.2.1). More

exactlythey write:

det(d* d )
(3.3.4) (det~1’

2= A
0 A

[det (d~0d,40)]~
2[det(d,~d,4 )]112

Theequation(3.3.4)is valid, of course,only in a formalsense,sincethe operators
involved are operatorsoninfinite dimensionalHilbert spacenotnecessarilyof the

trace class,so their determinantsare ill defined(i.e. infinite) unlesssomeregu-
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larizing procedure is performed. The functional Integral for gauge theories is

definedas

(3.3.5) 1= e_S~

e

where 5(A) is the action andDA is a formal (<<Lebesguex’)measureon thespace

of connections.

The integral (3.3.5)canbe alsowritten as

(3.3.6) J=NfDA b[d~(A —A0)] .P.e~S(A)

e

The expression(3.3.6) is the starting point for perturbative calculationsin quan-

tum gaugetheories.

Takinginto account(3.3.4)one can alsowrite:

(3.3.7) 1 = Nf ?a(det~)
112(det(d~adAa)lI2e_s(a)

where Da is the formal (<<Lebesgue>>)measureon the spaceof gaugeorbits.

det~is the formal determinantof themetric (3.2.1),S(a) is the (gaugeinvariant)

action,A is any connectionsuch that ir(A) = a. Formula(3.3.6)tell us that the
volume element relative to the metric (3.2.1) gives the right measurefor the

functional integralof thetheory.

Unfortunately everythingwhich has beensaid in this section is only true at
a formal level; a mathematicallycorrectdefinition for the functional integral is

yet to be found.Neverthelessthetheoryand the relative perturbativecalculations
give us somereal physical resultsand predictions.

4. GHOSTSAND ANOMALIES

4.1. GhostsandBRS transformations

In order to be able to make perturbativecalculationsone has to transform

the integral (3.3.6) into another functional integral, whoseintegrandis of the

form <<exp{—S’}>> as it was mentioned in sect. 2.1.

The functional 5’ is called the effective action and it turns out to contain
the action S(A) plus a term which comesout of the <<Fourier transform>>of the

s-function in (3.3.6) (gauge breaking term) plus the ghost term which arises in
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the following way.

Considerfirst the equation

(4.1.1) (det A~’ = dz dz* exp (_z*Az)

whereA is an n x n complexmatrix, andthe integral is computedoverC~x C’~.

If we pretend, as it was already said in sect.2.1, that the validity of (4.1.1)

extends to functional integrals and if we assumethat the Berezin’s rules for

integrationover anticommutingvariables(seee.g. [8]) hold, then we have:

(4.1.2) ~F.P.= detMf = fdc d~exp(—~Mfc)

where c and ~ are anticommutativeG ‘-valued fields calledghostandantighost

respectively. Notice that the anticommutativity is responsiblefor the fact that

in the r.h.s. of (4.1.2) we havedetM1 insteadof(detMfY
1 as it should be in

analogywith the (4.1.1).
Now the effective action 5’ dependsnot only on the vector potential and the

matterfields,but also on theghostand antighostfields.
Sincewe deal essentiallywith pure gaugetheories,we will not considermatter

fields in the future.
The effective action is not more gaugeinvariant, it is B.R.S.invariant i.e. it

is invariantunderthe Becchi-Rouet-Stora(BRS) transformationswhose<<infini-

tesimal>>versionis

(4.l.3.a) Aloe ~~.Ab0c+XdAc= :Ab0c+Xs(Ab0c)

(4.l.3.b) c —÷c—(l/2)X[c,c]= :c+Xs(c)

(4.l.3.c) ~—*~+XB= :~+Xs(~)

where AbC is the vector potential (connection), c and~ are the ghost andthe

antighostfields,s is, by definition, the (infinitesimal) BRS operator,B is asuita-

ble auxiliary fields such that s(B) = 0 and X is a <<constant>> anticommuting

parameterwhich is a sort of a conventionaldevice which is usedin field theory
whenevera match betweencommuting and anticommutingobjects is needed.

He have also,due to the anticommutativity of theghost fields:

s(d,4c)=—(l/2)dA([c,c]+ [d,4c,c])=0.

Sos2 = 0 (nilpotent characterof theBRS operator).
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Let now h(Aboc, c) be a functional of thevector potentials, of the ghostfields

(7) such that h (Ab0e, c) = j,~h,,(Ab0c,c), where h
0(Ab0c,c) is an n-form on M

(n = dim M) whoselocal expressionis a polynomial in the fieldsAloe, c andtheir

derivatives.The BRS operatorcan be definedon thesefunctionalsin the follow-

ing way:

(r
(Sh)(Ab0c,c) =: I Is(Ab0C) + s(c) I h (Aloe,c) +

J L oAboc bc]
M

o
where — and — arefunctional derivatives.

An anomalousterm (like the Adler-Bell-Jackiw anomaly)can be definedas a

functional Q of the vector potentials and the ghosts,suchthat SQ= 0 and ~

such that Q = SQ’ (for the definition of the Adler Bell Jackiwanomalysee[201,

[21]; for thedefinition of anomaloustermssee [22]).
We arenow able to explain the geometricalmeaningof theghost field andthe

BRS transformations.

Consider the’6 ‘-valued left invariant I -form w on ~ (Maurer Cartanform)

definedby:

(we identify the left invariant vector fields on with the correspondingelements

of i’). We identify w with the ghostfield (for more detailssee [23]).

For any connection A and V~E (s’, A + dA (w(~)) is anotherconnection,

which is obtained form A, by performing the infinitesimal gaugetransformation

givenby ~. If w is theghost field, the transformation (4.1 .3.a)becomes:

A

which in turn can be seenas representingin a symbolic form the effect of all

the possible infinitesimal gaugetransformations. In otherwords (4.l.3.a)stands

for:

(4.l.3.a’) (A, ~) ~—--~A+ dA(w(E)).

Notice that dA w can be consideredas a c2~(M,adP)-valuedI-form on ~ such
that: (dA w)(~)= d,4(w (~)).If we apply twice the transformation(4.1.3.a’),

(7) Oneshould also take into accountmatterfields, but, as it was saidbefore,in thispaper
we avoid consideringthem.
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antisymmetrizingwith respect to the vector fields ~, ~ E’6’ involved, we have:

(A, E, ~) A + d,4 o(~)+ dA +d

—d w(~)—d,4.4 +dAw(t)

A + d.4 [w(~), w(~)]= A + [d,4 w, wI (s., ~).

Notice that [d,4w, w] is a 2-form on ~ with valuesin ~2’(M,adP) which satisfies

the equation:

(4.1.4) [d.4W,w]—(l/2)d,4[W,W] =

= [d.4 w, w] + dA(d~w)= 0

whered is theexteriorderivativefor forms definedon~.

We can then conclude([23]):

a) we know that the ghost is an anticommutingscalarfield: this is explainedby

the fact that it is a 1 -form on ~g(anticommutativity) with valuesin a spaceof

zeroforms onM (scalar character);

b) the transformation (4.l.3.a) can be identified with the transformation

(4.l.3.a’);

c) in the transformation(4.1.3.b) the operator s can be identified with the
exterior derivative for forms on’6

d) eq. (4.1.4) expressesthe nilpotent character of the BRS transformations,
that is, if we apply twice the transformation(4.1.4.a’), antisymmetrizing w.r.t. to

the vector fields involved, and add the term d,4((d~w)(E,~‘), we comebackto

thesameconnectionwherewe startedfrom.

The study of the geometricalmeaningof the BRS transformationshasled us

to considerthat the relevant object is the action of ~ on ‘6. Now, wheneverwe

havean action of a Groupon a manifold, we have,in a naturalway, a cohomo-

logy of the Lie algebraof the Group with coefficientsin the algebraof differen-

tial forms on the manifold. In our case the coboundaryoperatoris exactly the
BRSoperator,as weshall in the next section.

4.2. Cohomologyof the gaugeLie algebra

Let ~0(’6) be the spaceof zero forms (functionals)on ‘6. VE E’6’ we can

define the fundamentalvector field Z~as the vector field which actson ~0(’6)

in the following way:

d
(Z~f)(A)= : —f(A +

dt —

Noticethat Z~(A)= dA w(~).
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Let FP(’6’,’6) be the spaceof thep-linear skewmappingsfrom’6’ x’6’ x.
x’6’ (p times) to f~°(’6)which satisfy the following continuity condition:

if i~iE F~(’6’,’6)andA E’6, thenthemap ~ given by

~ :‘6’x’6’x. ..

~ ~2 ~p) ~ ‘~L’(~~~2’ ‘ ‘ ‘ ‘

is continuousVA E’6.

In F*(’6’,’6) =: e~F~(’6’,’6) we can defmea coboundaryoperator ~ by:

F~(’6’,’6)—+FP~’(’6’,’6)

~ . . . , ~ ~)=

= : ~ft1
1(—l)~~ ~ +

+ (— l)’~’~([~,~], ~~ ~+ b~
i<i

where indicatesomissionand ~, E’6’, Vi.

Let us denoteby H”(’6’,’6) the p-th cohomology group for the complex
(F*(’6’,’6), ~). Thenwe have(see [23]):

a) functionalsof the vector potential with p-ghostsare elementsof F~(’6’,’6)

(p-cochains);
b) the BRSoperatorcanbe identifiedwith the coboundaryoperatorc~

c) gaugeinvariant functionalswith no ghostsareelementsof H°(’6’,’6);

d) (integrated) anomalous terms with p-ghosts (p ~‘ 1) are elements of
H~(’6’,’6).

Let now ‘6(~/~,f~)be, as usual, the principal bundle defined in sect. 2.2

endowedwith the connectionof theorem(3.1.6).Obviously ~‘ =‘6’ and one
can considerthe complex F*(’6’,’6) defined in the sameway as before.A p-

-form ~ on ‘6(p ~‘ 1) is called vertical if 4(A, it

1,, . . , it,,) = 0 wheneverone
of 7. E T,4 ‘6is horizontal.

We havethen thefollowing theorems(see[23] for the proofs)

ThEOREM 4.2.1. The spaceof vertical p-forms (p ~ 1) on ‘6 is isomorphic to

F~(f#’,’6).

In particular to any 4,1/ EF~(~’,’6),theorem 4.2.1. associatesthe vertical

p-form i,1/’on’~’givenby:
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where A E’6,
Ti ET,~ ‘sanda~±sthe connectionform as in theorem(3.1.8).

Let now ~ be any p-form on’6 and let 0,, denotethe verticalp-form defined
by:

~(A; ri,..., ~ =

O(A;d,4o~,4(r
1) dAcxA(-rP)).

If we denote by ~ the exterior derivative operatorfor forms on ‘6 and, as

usual,by ~ the coboundary (BRS) operator acting on cochainsin F*(’6’,~),

wehave(see[23]):

THEOREM4.2.2. Thefollowing identity holds:

(ö 4,11) ~- ~ ~)= (~i~1i)(A;r~ Tp+ i)

where ~/‘E F~(’6’,’6),~ = ~A(~) E’6’, ~, E T,4 wand 4/1 is the vertical p-form
on ~ as before.

4.3. LocalcohomologyandABJ anomaly

The spaceF~(’6’,’6)is <<too large>> for field theory; what we really needare
functionalswhich are integralsof polynomialsin the fields, the ghostsand their
derivatives.Forthis reasonwe wantto definethe<<local>> cohomology.

Let B a generic vector bundle over the manifold M and let F(B) the space

C~sectionsof B.
A p-linearmapL from

F(B) x. . . x F(B) (p-times)to

is saidto be local if

suppL(~1,... , E,,) C supp~ fl. . . fl supp

A theorem by Peetre [24], guaranteesthat in any local coordinatessystem L

is representedby a differential operator.

Let us considernow m-linearlocal mapsL~from

&2
1(M,adP) x. . . x &~(M,adP)(m-times)to~

ChooseA
0 E ‘6, seti~(A) = : A — A0andconsiderexpressionsof theform

L(A)=EL0(rI(A) ri(A))

wheretheLu’s arern-linearlocal mapsas before.
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In local coordinatesL(A) is a k-form whosecomponentsarepolynomials in

the 11(A) and its derivatives.

We denoteby Dk(’6, A
0, M) the spaceof all suchk-form which aremadeout

of a finite number of L0 ~s.

We considerthenp-cochainsfrom ‘6’ x ‘6’ x - . - x ‘6’ to L’~(’6,A0,M) with

the propertythat,if 0 is sucha cochainthen:

supp~ ~~)(A) C supp~ n... n supp ~.

In local coordinatessuch a 0 is a k-form depending<<locally>> on p-ghostsandon

the vectorpotential.
We denoteby Sr” thespaceof such 0’s andset S =: ~ s~’k

p,k
The spaceS~’~’is in fact a doublecomplexsincewecanintroducetwo coboun-

daryoperatorsas follows:

a) d :S!~,k__~*SP,1tT+1

,)= :d(Ø(~,...,

OkESP,k

b)

(o10~0)~ ~ =

~f=b(— 1)1 + l8(~) ~ ~ ~,,+ ~)+

+ ~ ~i<i

where denotesomissionand8~ (~)is the operatordefined as follows:

D”~(’6,A0, M) —~.Dk(’6, A0,M)

d
(

8bC(~)4/i) (A) ~—‘---~ — ‘,Li(A +

Of coursedb
10~=~10~d.We can then prove that (see[23]):

a) if n = dim M and Ø,~’belongsto S”~,then j~~ E F~(’6’,’6)and

o o~=o ~

be p p’



THE ACTION OF THE GROUP OF BUNDLE-AUTOMORPHISMS OF THE SPACE, ETC. 151

b) ~M 0; EH”(’6’,’6) =~‘~ ~ eS’°~nO such that ~ belongsto the (p + n)-

-th cohomology group computedw.r.t. the coboundaryoperator°joc(we prove

more generally that the spectralsequencefor the doublecomplex5** is degene-

ratedto theE
2term);

c) under the correspondencementionedabove,the Adler-Bell-Jackiw anomaly

and the<<anomaly>>in two dimension(see[23]) correspondrespectivelyto and

0~given by:

~ ~2’ ~ E4, E5) = f3(E1~~~2’ ~3)~ [~4~ ~5]), E, E’6’

and

E2, E3) ~ ~2’ E31), ~,

where f3 and K are respectively the trilinear symmetric invariant map for G’

and the Killing form (we considerthat every ad-invariantmultilinear symmetric

map canbe estendto a map from

~‘I(MadP) x ~2(M,adP) x. . to ~ (M)).

4.4. Calculusof variations and anomalies.The trace anomaly

The cohomological interpretation of the ABJ -anomaliessuggeststhat anoma-

lies in field theory are in generalof cohomologicalnature.To develop such a

general interpretation we resort here to the geometricalset-upfor calculus of

variationsas differential calculuson Banachmanifolds,andwe give an important

examplewhich confirmsthe aboveconjecture.

Let 3~be a Banacli manifold, whosepoints 0 are fieldsover a 4-dimensional

manifoldM, and let S be a smooth function on ,~,playing the roleof theaction

of a physicaltheory. We assumethatS is local. i.e. it canbe written as theintegral

overM of a polynomial lagrangeandensity.The spaceof suchfunctions will be

denotedby ~ For the sakeof simplicity we also assumethat M is compact

andwithout boundaries.
Let now Z EX(.t3E) be a vector field over ~. The first variation of S alongZ

is given by ~/~S = dS(Z), where denotesthe Lie derivative alongZ and d

is the exterior differential. The invariance group of the theory is a subgroup.)~

of the diffeomorphism group of .~, which acting on .~ leavesthe action S

invariant. We imagine that ,)f’can be given the structureof a Lie groupand we

denoteby ~f’ its Lie algebra.The action of .)~on,‘~ inducesa Lie algebrahomo-

morphism X :,W—*X(3~),which associatesto any it ER the fundamentalvector

field X(’r). The variation of S induced by it is then given by OS(r) = dS(X(r)).
Notice that OS( ) can be seenas a map OS( ) :~X’—~’f2~.The invarianceof S
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under.)(amountsto requiringthat 0 S(r) = 0, for any T E k.
We now considerthecomplex

where is the spaceof p-linear skew-symmetriclocal mapsW : Rx ... xR —*

and 0~W(r1,.. . ,~,,+ ~)= d W(X(r1) X(r~+ )). It is clear that ~ + ~ = 0,
so that we can constructthe cohomology sets H~(R,~ = : ker 0~/im~

In the following we shall omit the subscriptsand we will write simply 0 for 0,,.

As far as the relevanceof this cohomology is concerned,note that, obviously

enough,.)(-invariantaction functionals belong to H°(k,~ Indeed,the fact

that OS= 0 amountsto state- via Noether’stheorem- theexistenceof conserved
currents.Conversely,conservedcurrents,onceintegratedoverM, are cohomolo-
gousto 0 in H’(k, ~210oe)~

Let us now considera quantizedversionof thecondition 0 S( ) = 0. Weknow
that the existenceof a quantumtheory for a genericactionS is notguaranteed;
but, if the quantumaction principle holds, then the quantumanalogueF of the

actionshouldobeyanequationof theform

OF= h~+ 0(h
2),

where i~.: k -+ ~ It is obviousthat ~ shouldsatisfy the consistencycondition
= 0, so that it representsa cohomology class [~~]EH’(k, &~,.). If [~] ~ 0,

then it doesnot exist any function F’ E such that ~ = OF’. Accordingly,
thereis no redefinition i’~ = F — F’ of the actionsuch that F is invariantunder

J~Wecall any function~ of this kind an anomaly.
As an example,considerthe trace anomaly in the theory of a scalar field 0

interactingwith an externalgravitationalfield g~,,(see[25]). Theclassicalaction

is

S(~,g)=fd4xx~(g~ ~oa,,o—— R02)

whereR is the scalarcurvatureof g,~,,.The actionS is invariantundertheconfor-

mal transformation —~e2”g~,,,0 -+ e°0, where a is a real function on M.
We can easily construct the coboundary operator relevant for this problem

by setting a = e~,where e is a Grassmann(anticommuting)number and~ is a
Grassmannfield. The coboundaryoperator0 is then representedby = +
where
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Zg=fd4X ~

~ _J d4x~0—.

At the one-looplevel, ZF = h ~ + o(h) and Z~= 0. Since0 is notself-interact-

ing, we can disregard0-dependentterms and the mostgeneralfunction ~ with
dimension4 and <<ghost>>number1 turnsoutto be

= f ~ + a
2R~,,R~~+a3R

2+ a
4 LI R)

wherea. arereal coefficients.

Now one has ~ = .çd
4x V’~(4a

1+ 4a2+ 12a3)R~ 0 ~. Accordingly the

condition~ = 0 implies that a1 + a2 + 3a3= 0, whilea4 is arbitrary.Ontheother
hand,the first threetermsof ~ cannotbe obtainedas ~-transform of anything.

As far as the last term is concerned,one has Zf~d~xV’~E1R= _2fMd
4 x

LI R so the last term itself can be absorbedby a redefinition F of F. The

traceof the (anomalous)energymomentumtensoristhus

0
TM=—ZF=aF+bG

g

where

F=R R~~—2RR~+—R2
411’

G = R
417,~,,R~ — 4R411’R‘i” + R2

and the constantsa andb haveto be determinedby othermethods.

This result extendsto a self-interactingX~scalar field, as shown in detailby
Bonora,Cotta-Ramusinoand Reina([251), where we recoverby meansof coho-
mologicaJ techniquesthe general form of the anomalousterms consideredby

physicists.Otherexampleshavebeen developedmore recently,but we will not
considerthem here. For them, and further detailswe refer to our forthcoming
paperwith L. Bonora.
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